If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=780
We move all terms to the left:
x^2-(780)=0
a = 1; b = 0; c = -780;
Δ = b2-4ac
Δ = 02-4·1·(-780)
Δ = 3120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3120}=\sqrt{16*195}=\sqrt{16}*\sqrt{195}=4\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{195}}{2*1}=\frac{0-4\sqrt{195}}{2} =-\frac{4\sqrt{195}}{2} =-2\sqrt{195} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{195}}{2*1}=\frac{0+4\sqrt{195}}{2} =\frac{4\sqrt{195}}{2} =2\sqrt{195} $
| F(X)=12x-9. | | 36(y-4)=32(y+4) | | 2x^2-28x+97=0 | | 8y-2y+3=39 | | V-3.88=2.3v+1.32 | | 0.25x-1=0.25x+5 | | 1-2s-9=-4s+10 | | -10-6r=6-8r | | 7y=17.9 | | 12+11/6x=5+3x | | c-10=40 | | 12z+3z=0 | | 6u−4=7u | | 18-z=14 | | 5{x}^{2}+9x-2=0 | | t^2-7t+11=0 | | 1x-30=1x+50 | | (4x+1)/(3x-5)=x | | 8y-1=16 | | 4y+1=2y-1 | | (3x+1)^0.5-3x+379=0 | | x^2-80x+5600=0 | | 0=x^2-80x+5600 | | x=(-1.29+1.04435)/0.05324 | | 2z+3=-13 | | 27+4K=7k | | (-5)x=0 | | 28+4k=7k | | 37+4K=7k | | -7s=14+7 | | 30+7y=12y | | 7b+44=11b |